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Simulations in the mathematical modeling of the spread of the Hantavirus
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The range of validity of a recently proposed determinigtiean field model of the spread of the Hantavirus
infection is studied with the help of Monte Carlo simulations for the evolution of mice populations. The
simulation is found to reproduce earlier results on the average but to display additional behavior stemming
from discreteness in mice number and from fluctuations of the finite size system. It is shown that mice
diffusion affects those additional features of the simulation in a physically understandable manner, higher
diffusion constants leading to greater agreement with the mean field results.
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I. INTRODUCTION AND THE SIMULATION APPROACH and is typified by diffusion constani3s andD, for the two
kinds of mice. The moment equations of Abramson and Ken-
A simple mathematical model has been developed rekre (AK) are, thus,
cently by Abramson and Kenkrgl,2] for the analysis of dM MM
spatio-temporal patterns in the spread of the Hantavirus in- S bM—cMg— S aMM,+DV2Mg, (1)

fection[3,4]. That model is able to reproduce, very simply, dt K

several observed features in hanta epidemics such as refugia

which are foci of infection in the landscape, and temporal dM, MM )

patterns in the mice population such as the sporadic disap- dat —CM, - T+aMSM'+DIV M. @

pearance of infection driven by seasonal variations. The
model describes the evolution of mice populatidhanta- The quantitiesM, and Mg in the AK equations may be
infected and hanta-susceptipterough a set of deterministic thought to be given by
nonlinear equations. Since the true evolution is probabilistic,
the validity of such closed deterministic equations governing
the evolution of the “moments of the probabilitythe popu-
lations is, as in various other areas of science, always a
question of fundamental intereldi—7]. The present calcula- whereP(t) is the probability of realization of a configura-
tion addresses this question. tion labeled byé, corresponding to various values of suscep-
The Abramson-Kenkre model describes several processéible and infected mice throughout the terrain at tim&he
involving susceptible or infected mice densities!{ and  evolution equation governing the time dependenc® gt)
M,, respectively. birth, death, infection, competition, and is an equation,
motion. Infected and susceptible mice breed susceptible mice
at a rateb. Infected mice are largely nonsymptomatic, which dPg(t)
leads to the assumption that both types of population are dt
likely to die of natural reasons at the same m@t&€he source
of infection is pair interactiongdue to fight between mice  which is linear in the probabilitie®(t) and involves tran-
of different types at a rate, taken for simplicity to be con- sition ratesR;,, for the system to change its configuration
stant. Pair interaction between mice for shared resources cdrom ¢’ to £. The transition rates are intimately related to the
lead to mouse death, introducing a depletion rate which iguantitiesb, c, a, K, Dg, andD, in the AK equations.
proportional to the total mice population and characterized Analytical solutions of such master equations are seldom
by K, the carrying capacity of the environment. Lowr possible for nontrivial systems such as the Hantavirus propa-
values represent lower availability of water, food, shelter,gation. Our approach in the present study is, therefore, based
and other resources leading to higher rate of competitionon computer simulations. The system consists of sites la-
The motion of mice over the terrain occurs through diffusionbeled bya, there beingNg, mice placed at therth site. The
configuration of theMg,'s forms a system statg) given,
for instance in a one-dimensional lattice, by

Ms,.=§ ME P:(1), ©
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Each pair of parentheses represents a site. Transitions ocatesses occur with probabilitigg,=bAt and p.=cAt, re-

from such a state to spectively, which are constant and independent of the
1 . Wil et population at the site. The two latter processes, competition
[(M{,Mg)- -« (M{",Mg+1)(M*" " ,Mg™")- - -) and infection, occur with probabilities, which we will call

Pcomp @nd pins, respectively, that do depend on the total
population(which influences competitionand the infected
population(which influences infectionat each site, and are
therefore time dependent as well. They are calculated at ev-
ery step. After completion of each individual Monte Carlo
step, time is incremented by an amount equal ttN(t), the
reciprocal of the total number of mice in the entire system

through birth, to
(M} M- (M, ME=1) (ML, METh. .,
(M M) (MEf=1 M (ML METD). )

through death and competition processes, to

[10].
|(M |1 M é) S (MP+1ME=1)(M Ia+1 M g+1) ) ' The depe_ndence of the probabilitipg,m,and pj,; on the '
site population needs to be modeled based on assumptions
through the infection process, and to about the interactions. We have analyzed two alternatives. In
the one whose results we report in most of the paper, we
(M MY (MP T+ ME H(MEP—1ME) assume that, at each site, a mean field approach is valid: the
Wil i mice are assumed to live in close contact and in a well-mixed
X(MPFT5,Mg o)), state. Each site of the simulation can be thought of as repre-
senting a regular-sized region in the field, such that some
(M}, Mg)- - (M{™H MEH(M{—1MQ) mice have overlapping home ranges, sharing local resources

and coming into contact to allow the propagation of the vi-
rus. In such a case, the probabilities of the nonlinear pro-
cessegcompetition and infectioncan be taken proportional

to the corresponding total population at the site. That is to

XMt Merty .y,

(ML MY (ME T ME T+ 1) (ME ME-1)

X (ML Ma+hy.. ) say, Peomp= At(M*—1)/K, and is thus governed by an en-
s ' vironmentally controlled carrying capacity of the site, and
(ME,MY). . (ME 2 ME Y (ME ME—1) Pin= aA.tM,“. The gltgrnativg manner of cc.)nsideringomp
and p;; involves pair interaction considerations and will be
XM ME 41y, ), discussed briefly in Sec. IV.

through diffusion.

It is straightforward to write the relevant transition rates
explicitly following methods analogous to those employed in  Abramson and Kenkre have shown that, in the absence of
Ref.[7]. In the present investigation we start with an initial diffusion (D=0), the system undergoes a bifurcation at a
state for each type of mice population and perform a Montéinite critical value of the carrying capaciti¢2<, given by
Carlo simulation. For the sake of simplicity we takes
=D,=D, i.e., we assume the mice to diffuse similarly, b
whether susceptible or infected, and tdke to be indepen- KéK:a(b—c)’ )
dent of the site labed.

The terrain is modeled as a two-dimensional square lat- . .
tice. Each Monte Carlo step consists in randomly choosing here, as prewqusly stated,. ¢ aare the. rates of b'rth’
site, picking a mouse if there is any at the chosen site, a _ea_th, a,{‘,? infection, respectlyely. Thls, crltlcal_carrylng ca-
sessing its infection status by taking into account the proporPaCity K™ separates two regions of different infective be-
tion of infected to susceptible mice at that site, and ther'@vior: if K<Kc, the equilibrium population is not infected
letting the mouse undergo the five processes mentioned¥i =0) if K>Kc, there is a positive infected fraction of
above. Each of the five processes has a rate associated wifie populatiof M} =K(b—c)—b/a]. We use the symbol *
it. The reciprocal of the largest of the rates is chosen as afp denote the equilibrium population.
upper limit to the time stepAt taken for the simulatiofi9], The AK model predicts a total mice density equilibrium
so that the probabilities are between 0 and 1. At each stepalueM™, which is actually the solution of the logistic equa-
each mouse undergoes each process if the probability is bigion, given by M* =K(b—c). If K<K¢, the equilibrium
ger than a uniformly sampled random number between 0 andalue for the susceptible mice population Mg5=M*

1. First, the mouse is moved to any of its four nearest neigh=K(b—c) and if K>K., M=Db/a, independent oK.

bor sites with probability equal t®'/4 where the dimen- In comparing our present simulation results with the AK
sionless diffusion probabilith’ is DAt/(Ax)?, whereAx is  predictions, we must rescale the latter because, in simulation,
the lattice constant. Then it is subjected to the processes @rocesses proceed event by event. The probability that one of
breeding, death by “natural” causes with probability, deaththe two decay processes, natural death and competition, oc-
through competition with probability, or infection if origi- curs, is dependent on whether the other decay process has, or
nally susceptible with probability. The first two of these pro- has not, already occurred. This feature is not present in the

II. RESULTS IN THE ABSENCE OF DIFFUSION
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FIG. 1. Equilibrium value of the infected mice population.  FIG. 2. Infected mice population as a function of time expressed
Simulations without diffusior(filled dots, AK model (solid line). in units of the simulation step. The thin line depicts a value of the
The shift of the scaled critical carrying capadi(@ to higher values  carrying capacity, in units of M, of 140 mice per lattice point,
for the simulation is shown with the arrow. Rateandc, in units of  while the thick line corresponds to a value of 225 mice per lattice
1/At, equal 0.5 and 0.2, respectively, the dimensionless quantityoint. Parameters as in Fig. 1.
aKZ is 1.33, and the value dfZ in appropriate units is 133.

infection. It is also clear that the critical value Kfin the
AK equations which describes only averages of the populaMonte Carlo model is higher than the one predicted by the
tions. If the competition process is applied first with prob-AK model, given by Eq(6), as shown by the arrow.
ability peomy, the death process takes place with a probability ~ The reason for the shift of the critical carrying capacity to
(1—peomp CAt leading to a rescaling of the parameteas higher values can be understood as the interaction of two
¢(1—Peomp. This modification at first could be thought as properties of the simulated system: the discreteness of the
not so easy to make due to the fact tpgj,is not a fixed population and the existence of fluctuations. Both these are
parameter throughout the simulation: it depends on the mickealistic and not present in the AK evolution. The population
population at a site and at a given time. Nevertheless, all thef the simulated system is discrete and, as a consequence, the
magnitudes in which we are interested in the AK model arestateM{ =0, which is an unstable equilibrium state of the
found for equilibrium situations where the mice density iscontinuum AK model, turns out to be a stable equilibrium
known, sopgoms=M*At/K, whereM* is the total equilib- state of the discrete system. In _faclf,ira'te perturbation rep-
rium mice density that foK=K¢ is M*=M%=b/a. In- resente_d by one whole mouse is need_ed to take the mfected
stead, if the death process is applied first with probabilityPopulation out of the statkl,=0. If the infected population
cAt, the competition process takes place with probability@t & Site drops to zero, there are no sources for such a per-
(1—cAt)peomp: I this case, the carrying capacity is to be tgrbatmn in a smgle_ site system, or in the absence of diffu-
rescaled a& (1—cAt) with parameters andAt maintained ~ Sion- How can the infected popylatlon drop to zero? In.the
fixed during the entire simulation. As a result, no mattercontinuous model, such a state is approached asymptotically
which of the two decay processes is applied first, the rescale@ly whenK<K¢. The stochastic nature of the simulations

critical carrying capacity is found to be and the finite size of the system impose fluctuations that can
make theM,=0 state attainable even whé&™>K.. When
b(1—cAt) K=Kc, theM7 is small and fluctuations around it are large.
K&=Kc(1—cAt)= “alb—c) (6)  Eventually, the fluctuations, which are inversely proportional

to the square root of} , drive the infected population to
The rescaled total equilibrium population of the mice i 2€ro, at.wh|ch point th? system gets trapped._ In_order to
make this behavior particularly clear, we show in Fig. 2 the

S _ _ . . .
;;c(tbth:t) gﬁ dCerts) .ng?kér;g etz:lds roe; U(I)trlztoﬂ? eC ceo ul?i}igrriljlnt]he time evolution of the infected population for two valueskof
S b ' 9 It can be seen that, whef is much greater thai¢ (thin

) . e Rk hat | .
!nfected mice .popu!atlorh/ll =M s can be found.eas line), the fluctuations are much smaller than the mean value
ily. The order in which the decay processes are applied doe d the population remains far from the stite=0. When

not thus matter; we have chosen to apply the natural dea is only slightly greater thamKc (thick line), the fluctua-

process first. _ . . tions are of the order of the mean value, and succeed in
Figure 1 shows the equilibrium infected population as ataking the population to zero

function of carrying capacity, for a system without diffu-
sion. The solid line represents the analytical result of the AK
model. The dashed and dotted lines show the result of the
simulations. It is clearly seen that both display the critical We now introduce diffusion in the simulation® ¢ 0).

behavior separating two phases, one with and one withowtigure 3 shows the equilibrium infected population for sev-

IIl. RESULTS WITH DIFFUSION
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FIG. 3. Effect of diffusion on the infected population in a 10 FIG. 4. Equilibrium values for total mice population AK model

x 10 lattice. We consider four values of the diffusion probabinty ~ (dotted ling, simulation with diffusion(filled dots; equilibrium
(see text for details O (dotted ling, 0.1 (dashed ling 0.5 (dash- values for susceptible mice population AK modelashed ling

dotted ling, 1 (thin line). The AK model is depicted by the thick Simulation with diffusion(empty squares equilibrium values for
line. Ratesb andc, in units of 1At, equal 0.5 and 0.2, respectively, Infected mice population AK modefsolid line), simulation with
the dimensionless quantit&Kg is 1.32 and the value ng in diffusion (filled squares Parameters values as in Fig. 1 and a value

appropriate units is 66. of D'=1.

eral systems, with different values of the diffusion constan?fOC€SSES. IRt/K(AX)? is the probability that a mouse at
D, correspondingly of the dimensionless quantify’ site @ dies as a result of competitive interaction with each
=DAt/(Ax)? defined in Sec. I. It can be seen that the effectof the otherN, mice present at the site, the probability
of diffusion on the bifurcation diagram is to lower the valueof ~ dying  from  competition is pgom=1—(1
of the critical carrying capacity. In fact, if the total probabil- — At/[K(Ax)2])N«"1), Similar considerations apply faf.
ity for diffusion exceeds or equals 0.5, the infected popula\We have carried out simulations on the basis of these non-
tion is almost indistinguishable from the one predicted by thainear pg,,,andpg;. They have shown, at least qualitatively,
mean field AK model. A small amount of transport betweentne same results as those with their linear counterparts. While
sites restores the unstable character of the 8dte-0, pro-  the nonlinear probabilities produce essentially the same re-
viding for the necessary finite perturbation to take the systemdyits as linear ones, viz., a bifurcation to a state of positive
out of the trapped state. infection at a finite value oK, the precise functional depen-
dence of the bifurcation diagram as a functiorkois differ-
ent. We believe that only analysis of field data will be able to
IV. DISCUSSION settle this matter in the two cases.

I An important observation is that the transition of a system
The deterministic model of Abramson and Kenkre has_ .. . e . S
been found to be valid for diffusive situations Wi’ with little diffusion to its equilibrium state takes longerKf
=0.5 and forK values not too largeK<400). A critical is near the critical value. Thus, in a real landscape situation,
b/eﬁavior is also found in the ro%abilit evélution in the equilibrium may never be reached by the mice population
. ) . P Yy due to changes in the environmdseasons, weather, etc.
present simulations. Fd’'=0.5, where mice transport de-

- . . Simulations have led us to a better understanding of the
stabilizes theM| =0 state, the critical value of the carrying g

o o ole of discreteness in mice numbekN # 0) and fluctuation
capacity is as the one expected from the deterministic mode f finite number of mice K+). Both these factors tend
Ner\]/ert'helfess, fth>400’ fthg S|mulat||ons g'\./f? equn]:bnum generally, to cause differences between simulations and mo-
be aV|or(_ or both types o mice popu ationsli erent from  en equations. Further ongoing work along these lines in-
that predicted by the deterministic AK model. This difference

be ob din Fi h del di q cludes the investigation of waves via simulation to make
can be observed in Fig. 4. The AK model predicts an underg,niact with recent work based on the AK mogig] and a
estimated and constant equilibrium val(sashed ling for

; . ; ) ! more microscopic study of the mice interactions by placing
suscgptlble. mice populatlon. and predicts an oyergstlmategne rather than several mice at each site. These will be re-
and linear increase for the infected populati@olid line). ported on elsewhere.

This should be compared to simulation data k6 (empty
squares and My (filled squares Both variations in the
simulation lead to a total_n_mc_e population that is in good ACKNOWLEDGMENTS
accordance to the deterministic AK model.
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