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Simulations in the mathematical modeling of the spread of the Hantavirus
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The range of validity of a recently proposed deterministic~mean field! model of the spread of the Hantavirus
infection is studied with the help of Monte Carlo simulations for the evolution of mice populations. The
simulation is found to reproduce earlier results on the average but to display additional behavior stemming
from discreteness in mice number and from fluctuations of the finite size system. It is shown that mice
diffusion affects those additional features of the simulation in a physically understandable manner, higher
diffusion constants leading to greater agreement with the mean field results.
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I. INTRODUCTION AND THE SIMULATION APPROACH

A simple mathematical model has been developed
cently by Abramson and Kenkre@1,2# for the analysis of
spatio-temporal patterns in the spread of the Hantavirus
fection @3,4#. That model is able to reproduce, very simp
several observed features in hanta epidemics such as re
which are foci of infection in the landscape, and tempo
patterns in the mice population such as the sporadic di
pearance of infection driven by seasonal variations. T
model describes the evolution of mice populations~hanta-
infected and hanta-susceptible! through a set of deterministi
nonlinear equations. Since the true evolution is probabilis
the validity of such closed deterministic equations govern
the evolution of the ‘‘moments of the probability’’~the popu-
lations! is, as in various other areas of science, alway
question of fundamental interest@5–7#. The present calcula
tion addresses this question.

The Abramson-Kenkre model describes several proce
involving susceptible or infected mice densities (MS and
MI , respectively!: birth, death, infection, competition, an
motion. Infected and susceptible mice breed susceptible m
at a rateb. Infected mice are largely nonsymptomatic, whi
leads to the assumption that both types of population
likely to die of natural reasons at the same ratec. The source
of infection is pair interactions~due to fights! between mice
of different types at a ratea, taken for simplicity to be con-
stant. Pair interaction between mice for shared resources
lead to mouse death, introducing a depletion rate which
proportional to the total mice population and characteriz
by K, the carrying capacity of the environment. LowerK
values represent lower availability of water, food, shelt
and other resources leading to higher rate of competit
The motion of mice over the terrain occurs through diffusi
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and is typified by diffusion constantsDS andDI for the two
kinds of mice. The moment equations of Abramson and K
kre ~AK ! are, thus,

dMS

dt
5bM2cMS2

MSM

K
2aMSMI1DS¹2MS , ~1!

dMI

dt
52cMI2

MIM

K
1aMSMI1DI¹

2MI . ~2!

The quantitiesMI and MS in the AK equations may be
thought to be given by

MS,I5(
j

MS,I
j Pj~ t !, ~3!

wherePj(t) is the probability of realization of a configura
tion labeled byj, corresponding to various values of susce
tible and infected mice throughout the terrain at timet. The
evolution equation governing the time dependence ofPj(t)
is an equation,

dPj~ t !

dt
5(

j8
Rjj8Pj8~ t !2Rj8jPj~ t !, ~4!

which is linear in the probabilitiesPj(t) and involves tran-
sition ratesRjj8 for the system to change its configuratio
from j8 to j. The transition rates are intimately related to t
quantitiesb, c, a, K, DS , andDI in the AK equations.

Analytical solutions of such master equations are seld
possible for nontrivial systems such as the Hantavirus pro
gation. Our approach in the present study is, therefore, ba
on computer simulations. The system consists of sites
beled bya, there beingNS,I

a mice placed at theath site. The
configuration of theMS,I

a ’s forms a system stateuj& given,
for instance in a one-dimensional lattice, by

uj&5u~MI
1 ,MS

1!•••~MI
a21 ,MS

a21!~MI
a ,MS

a!

3~MI
a11 ,MS

a11!•••&.
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Each pair of parentheses represents a site. Transitions o
from such a state to

u~MI
1 ,MS

1!•••~MI
a ,MS

a11!~MI
a11 ,MS

a11!•••&

through birth, to

u~MI
1 ,MS

1!•••~MI
a ,MS

a21!~MI
a11 ,MS

a11!•••&,

u~MI
1 ,MS

1!•••~MI
a21,MS

a!~MI
a11 ,MS

a11!•••&

through death and competition processes, to

u~MI
1 ,MS

1!•••~MI
a11,MS

a21!~MI
a11 ,MS

a11!•••&

through the infection process, and to

u~MI
1 ,MS

1!•••~MI
a2111,MS

a21!~MI
a21,MS

a!

3~MI
a11 ,MS

a11!•••&,

u~MI
1 ,MS

1!•••~MI
a21 ,MS

a21!~MI
a21,MS

a!

3~MI
a1111,MS

a11!•••&,

u~MI
1 ,MS

1!•••~MI
a21 ,MS

a2111!~MI
a ,MS

a21!

3~MI
a11 ,MS

a11!•••&,

u~MI
1 ,MS

1!•••~MI
a21 ,MS

a21!~MI
a ,MS

a21!

3~MI
a11 ,MS

a1111!•••&,

through diffusion.
It is straightforward to write the relevant transition rat

explicitly following methods analogous to those employed
Ref. @7#. In the present investigation we start with an initi
state for each type of mice population and perform a Mo
Carlo simulation. For the sake of simplicity we takeDS
5DI5D, i.e., we assume the mice to diffuse similar
whether susceptible or infected, and takeKa to be indepen-
dent of the site labela.

The terrain is modeled as a two-dimensional square
tice. Each Monte Carlo step consists in randomly choosin
site, picking a mouse if there is any at the chosen site,
sessing its infection status by taking into account the prop
tion of infected to susceptible mice at that site, and th
letting the mouse undergo the five processes mentio
above. Each of the five processes has a rate associated
it. The reciprocal of the largest of the rates is chosen as
upper limit to the time stepDt taken for the simulation@9#,
so that the probabilities are between 0 and 1. At each
each mouse undergoes each process if the probability is
ger than a uniformly sampled random number between 0
1. First, the mouse is moved to any of its four nearest ne
bor sites with probability equal toD8/4 where the dimen-
sionless diffusion probabilityD8 is DDt/(Dx)2, whereDx is
the lattice constant. Then it is subjected to the processe
breeding, death by ‘‘natural’’ causes with probability, dea
through competition with probability, or infection if origi
nally susceptible with probability. The first two of these pr
04190
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cesses occur with probabilitiespb5bDt and pc5cDt, re-
spectively, which are constant and independent of
population at the site. The two latter processes, competi
and infection, occur with probabilities, which we will ca
pcomp and pinf , respectively, that do depend on the to
population~which influences competition! and the infected
population~which influences infection! at each site, and are
therefore time dependent as well. They are calculated at
ery step. After completion of each individual Monte Car
step, time is incremented by an amount equal toDt/N(t), the
reciprocal of the total number of mice in the entire syste
@10#.

The dependence of the probabilitiespcomp andpinf on the
site population needs to be modeled based on assump
about the interactions. We have analyzed two alternatives
the one whose results we report in most of the paper,
assume that, at each site, a mean field approach is valid
mice are assumed to live in close contact and in a well-mi
state. Each site of the simulation can be thought of as re
senting a regular-sized region in the field, such that so
mice have overlapping home ranges, sharing local resou
and coming into contact to allow the propagation of the
rus. In such a case, the probabilities of the nonlinear p
cesses~competition and infection! can be taken proportiona
to the corresponding total population at the site. That is
say, pcomp

a 5Dt(Ma21)/K, and is thus governed by an en
vironmentally controlled carrying capacity of the site, a
pinf

a 5aDtM I
a . The alternative manner of consideringpcomp

and pinf involves pair interaction considerations and will b
discussed briefly in Sec. IV.

II. RESULTS IN THE ABSENCE OF DIFFUSION

Abramson and Kenkre have shown that, in the absenc
diffusion (D50), the system undergoes a bifurcation at
finite critical value of the carrying capacity,KC

AK , given by

KC
AK5

b

a~b2c!
, ~5!

where, as previously stated,b, c, a are the rates of birth,
death, and infection, respectively. This critical carrying c
pacity KC

AK separates two regions of different infective b
havior: if K,KC , the equilibrium population is not infecte
(MI* 50) if K.KC , there is a positive infected fraction o
the population@MI* 5K(b2c)2b/a#. We use the symbol *
to denote the equilibrium population.

The AK model predicts a total mice density equilibriu
valueM* , which is actually the solution of the logistic equa
tion, given by M* 5K(b2c). If K,KC , the equilibrium
value for the susceptible mice population isMS* 5M*
5K(b2c) and if K.KC , MS* 5b/a, independent ofK.

In comparing our present simulation results with the A
predictions, we must rescale the latter because, in simula
processes proceed event by event. The probability that on
the two decay processes, natural death and competition
curs, is dependent on whether the other decay process ha
has not, already occurred. This feature is not present in
8-2
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AK equations which describes only averages of the pop
tions. If the competition process is applied first with pro
ability pcomp, the death process takes place with a probabi
(12pcomp)cDt leading to a rescaling of the parameterc as
c(12pcomp). This modification at first could be thought a
not so easy to make due to the fact thatpcomp is not a fixed
parameter throughout the simulation: it depends on the m
population at a site and at a given time. Nevertheless, all
magnitudes in which we are interested in the AK model
found for equilibrium situations where the mice density
known, sopcomp5M* Dt/K, whereM* is the total equilib-
rium mice density that forK5KC is M* 5MS* 5b/a. In-
stead, if the death process is applied first with probabi
cDt, the competition process takes place with probabi
(12cDt)pcomp. In this case, the carrying capacity is to b
rescaled asK(12cDt) with parametersc andDt maintained
fixed during the entire simulation. As a result, no mat
which of the two decay processes is applied first, the resc
critical carrying capacity is found to be

KC
S5KC~12cDt !5

b~12cDt !

a~b2c!
. ~6!

The rescaled total equilibrium population of the mice
KS(b2c)/(12cDt). Taking this result into account and th
fact that MS* does not depend onK or c, the equilibrium
infected mice populationMI* 5M* 2MS* can be found eas
ily. The order in which the decay processes are applied d
not thus matter; we have chosen to apply the natural d
process first.

Figure 1 shows the equilibrium infected population as
function of carrying capacity,K, for a system without diffu-
sion. The solid line represents the analytical result of the
model. The dashed and dotted lines show the result of
simulations. It is clearly seen that both display the critic
behavior separating two phases, one with and one with

FIG. 1. Equilibrium value of the infected mice populatio
Simulations without diffusion~filled dots!, AK model ~solid line!.
The shift of the scaled critical carrying capacityKC

S to higher values
for the simulation is shown with the arrow. Ratesb andc, in units of
1/Dt, equal 0.5 and 0.2, respectively, the dimensionless quan
aKC

S is 1.33, and the value ofKC
S in appropriate units is 133.
04190
-
-
y

e
e

e

y
y

r
ed

es
th

a

e
l
ut

infection. It is also clear that the critical value ofK in the
Monte Carlo model is higher than the one predicted by
AK model, given by Eq.~6!, as shown by the arrow.

The reason for the shift of the critical carrying capacity
higher values can be understood as the interaction of
properties of the simulated system: the discreteness of
population and the existence of fluctuations. Both these
realistic and not present in the AK evolution. The populati
of the simulated system is discrete and, as a consequence
stateMI* 50, which is an unstable equilibrium state of th
continuum AK model, turns out to be a stable equilibriu
state of the discrete system. In fact, afinite perturbation rep-
resented by one whole mouse is needed to take the infe
population out of the stateMI50. If the infected population
at a site drops to zero, there are no sources for such a
turbation in a single site system, or in the absence of di
sion. How can the infected population drop to zero? In
continuous model, such a state is approached asymptotic
only whenK,KC . The stochastic nature of the simulation
and the finite size of the system impose fluctuations that
make theMI50 state attainable even whenK.KC . When
K*KC , theMI* is small and fluctuations around it are larg
Eventually, the fluctuations, which are inversely proportion
to the square root ofMI* , drive the infected population to
zero, at which point the system gets trapped. In order
make this behavior particularly clear, we show in Fig. 2 t
time evolution of the infected population for two values ofK.
It can be seen that, whenK is much greater thanKC ~thin
line!, the fluctuations are much smaller than the mean va
and the population remains far from the stateMI50. When
K is only slightly greater thanKC ~thick line!, the fluctua-
tions are of the order of the mean value, and succeed
taking the population to zero.

III. RESULTS WITH DIFFUSION

We now introduce diffusion in the simulations (DÞ0).
Figure 3 shows the equilibrium infected population for se

ty

FIG. 2. Infected mice population as a function of time expres
in units of the simulation step. The thin line depicts a value of
carrying capacity, in units of 1/Dt, of 140 mice per lattice point,
while the thick line corresponds to a value of 225 mice per latt
point. Parameters as in Fig. 1.
8-3
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eral systems, with different values of the diffusion const
D, correspondingly of the dimensionless quantityD8
5DDt/(Dx)2 defined in Sec. I. It can be seen that the eff
of diffusion on the bifurcation diagram is to lower the valu
of the critical carrying capacity. In fact, if the total probab
ity for diffusion exceeds or equals 0.5, the infected popu
tion is almost indistinguishable from the one predicted by
mean field AK model. A small amount of transport betwe
sites restores the unstable character of the stateMI* 50, pro-
viding for the necessary finite perturbation to take the sys
out of the trapped state.

IV. DISCUSSION

The deterministic model of Abramson and Kenkre h
been found to be valid for diffusive situations withD8
>0.5 and forK values not too large (K,400). A critical
behavior is also found in the probability evolution in th
present simulations. ForD8>0.5, where mice transport de
stabilizes theMI* 50 state, the critical value of the carryin
capacity is as the one expected from the deterministic mo
Nevertheless, forK.400, the simulations give equilibrium
behavior~for both types of mice populations! different from
that predicted by the deterministic AK model. This differen
can be observed in Fig. 4. The AK model predicts an und
estimated and constant equilibrium value~dashed line! for
susceptible mice population and predicts an overestim
and linear increase for the infected population~solid line!.
This should be compared to simulation data forMS* ~empty
squares! and MI* ~filled squares!. Both variations in the
simulation lead to a total mice population that is in go
accordance to the deterministic AK model.

This behavior for high values ofK may be understood i
we can consider only two-mice interactions for the nonlin

FIG. 3. Effect of diffusion on the infected population in a 1
310 lattice. We consider four values of the diffusion probabilityD8
~see text for details!: 0 ~dotted line!, 0.1 ~dashed line!, 0.5 ~dash-
dotted line!, 1 ~thin line!. The AK model is depicted by the thick
line. Ratesb andc, in units of 1/Dt, equal 0.5 and 0.2, respectivel
the dimensionless quantityaKC

S is 1.32, and the value ofKC
S in

appropriate units is 66.
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processes. IfDt/K(Dx)2 is the probability that a mouse a
site a dies as a result of competitive interaction with ea
of the otherNa mice present at the sitea, the probability
of dying from competition is pcomp

a 512„1
2Dt/@K(Dx)2#…(Na21). Similar considerations apply topinf

a .
We have carried out simulations on the basis of these n
linearpcomp

a andpinf
a . They have shown, at least qualitativel

the same results as those with their linear counterparts. W
the nonlinear probabilities produce essentially the same
sults as linear ones, viz., a bifurcation to a state of posit
infection at a finite value ofK, the precise functional depen
dence of the bifurcation diagram as a function ofK is differ-
ent. We believe that only analysis of field data will be able
settle this matter in the two cases.

An important observation is that the transition of a syst
with little diffusion to its equilibrium state takes longer ifK
is near the critical value. Thus, in a real landscape situat
equilibrium may never be reached by the mice populat
due to changes in the environment~seasons, weather, etc.!.

Simulations have led us to a better understanding of
role of discreteness in mice number (DNÞ0) and fluctuation
of finite number of mice (NÞ`). Both these factors tend
generally, to cause differences between simulations and
ment equations. Further ongoing work along these lines
cludes the investigation of waves via simulation to ma
contact with recent work based on the AK model@8# and a
more microscopic study of the mice interactions by plac
one rather than several mice at each site. These will be
ported on elsewhere.

ACKNOWLEDGMENTS

The work presented in this paper was supported in par
a contract from Los Alamos National Laboratory to th

FIG. 4. Equilibrium values for total mice population AK mode
~dotted line!, simulation with diffusion~filled dots!; equilibrium
values for susceptible mice population AK model~dashed line!,
simulation with diffusion~empty squares!; equilibrium values for
infected mice population AK model~solid line!, simulation with
diffusion ~filled squares!. Parameters values as in Fig. 1 and a va
of D851.
8-4



i-

-
-

A.
cas
i-

SIMULATIONS IN THE MATHEMATICAL MODELING O F . . . PHYSICAL REVIEW E 66, 041908 ~2002!
University of New Mexico, a grant from the National Sc
ence Foundation’s Division of Material Research~Grant No.
DMR0097204!, and SECyT-University of Buenos Aires, Ar
gentina ~Grant No. I046!. Work at Los Alamos was sup
ci-
n

.E

K
m

04190
ported by the U.S. Department of Energy. M. A. A. and G.
acknowledge the support of the Consortium of the Ameri
for Interdisciplinary Science and the hospitality of the Un
versity of New Mexico.
er,

em.

a
d,
@1# G. Abramson and V.M. Kenkre, Phys. Rev. E66, 011912
~2002!.

@2# G. Abramson and V. M. Kenkre, in Proceeding of Unified S
ence and Technology for Reducing Biological Threats a
Countering Terrorism Conference~BTR 2002!, p. 64.

@3# J.N. Mills, T.L. Yates, T.G. Ksiazek, C.J. Peters, and J
Childs, Emerg. Infect. Dis.5, 95 ~1999!.

@4# J.N. Mills, T.G. Ksiazek, C.J. Peters, and J.E. Childs, Proc.
Ned. Akad. Wet., Ser. B: Palaeontol., Geol., Phys., Che
Anthropol.5, 135 ~1999!.

@5# M. Dresden, Rev. Mod. Phys.33, 265 ~1961!.
d

.

.
.,

@6# V.M. Kenkre, Z. Phys. B: Condens. Matter43, 22 ~1981!.
@7# V.M. Kenkre and H.M. Van Horn, Phys. Rev. A23, 3200

~1981!.
@8# G. Abramson, V. M. Kenkre, T. L. Yates, and R. R. Parment

URL: http://arxiv.org/pdf/physics/0203088~physics/0203088!
@9# E.J. Dawnkaski, D. Srivastava, and B.J. Garrison, J. Ch

Phys.102, 9401~1995!.
@10# The factor 1/N(t) occurs because each mouse provides

clock, but all N clocks are running in parallel as explaine
e.g., in P.L. Cao, Phys. Rev. Lett.73, 2595~1994!.
8-5


